NAME: \qquad

Test Prep 2

There are two quick solving problems on this page (all the integrals should be quick; if not, then you made a mistake). If you finish this page, try the extra problems on the back (for an extra point). You have 10 minutes!

1. (Separable) Find the general explicit solution to $\frac{d y}{d t}=\frac{t}{y^{2}}$

Sol'n:

$$
\begin{array}{rll}
y^{2} d y & =t d t & \\
\frac{1}{3} y^{3} & =\frac{1}{2} t^{2}+C_{1} & \\
y^{3} & =\frac{3}{2} t^{2}+C_{2} & C_{2}=3 C_{1} \\
y & =\left(\frac{3}{2} t^{2}+C_{2}\right)^{1 / 3} &
\end{array}
$$

Thus,

$$
y=\left(\frac{3}{2} t^{2}+C\right)^{1 / 3}
$$

2. (Integrating Factor) Find the explicit general solution to $\frac{d y}{d t}+\frac{1}{t} y=t$ (You may assume $t>0$).

Sol'n:

The integrating factor is $\mu(t)=e^{\ln (t)}=t$. Multiplying gives

$$
\begin{aligned}
t \frac{d y}{d t}+y & =t^{2} \\
\frac{d}{d t}(t y) & =t^{2} \\
t y & =\frac{1}{3} t^{3}+C_{1} \\
y & =\frac{1}{3} t^{2}+\frac{C_{1}}{t}
\end{aligned}
$$

Thus,

$$
y=\frac{1}{3} t^{2}+\frac{C}{t}
$$

